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Assignment 1: Still need to solve Computer Vision
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Vision is based on inference
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Popular Uses of Feature Detection:

Structure from Motion
Photo-montage
Panorama/Stitching/Mosaicing
nformation Retrieval

Object Detection

Scene Detection

Action Detection
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Google Image Search,

Google Goggles,
etc...




What makes us perceive objects in images?

Hypothesis: process images bottom-up

— Extract “features”

— Combine features with prior knowledge to
classify objects in the image at a high-level
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Semantic label =
High-level description
A

Grouping of Features =
Mid-level description

mei ' Single feature =

Low-level description

1 Pixels =

\ Low-level description
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Generic Object Detection Workflow:

ow do we detect features?
ow do we describe features?
ow do we match features?
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Pixels

Edges/Lists

Feature Points

Blobs/Regions

Maps

Luminance; Color-spaces; Depth; Heat

Sobel; Canny; Hysteresis; Connected
Components; Shape Models

SIFT; SURF; Harris Corners; HOG; FAST

Mean-Shift; MSER; Watershed; Graph-Cuts;
Background Subtraction; Appearance Models

Geodesics; Topography; Density
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Step Edges

Roof Edge Line Edges
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Edges are where change occurs
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Images can be thought of as functions:
Pixel at location x:

P(x)
Then we can create a function £, which

describes the intensity of pixel x:
f(x)
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Second Derivative
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Derivative
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Gradient




Images are Discrete Functions

of . .
m[:z:, yl =~ flr + 1,y] — flz, y]




Sobel: Convolution Operators
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What the **** is Convolution
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What the **** is Convolution

original

1.0

coefticient

By ve LR

i)
Pixel offset
[0,0,0,0,1,0,0,0,0]
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What the **** is Convolution

1.0

.

1)
Pixel olfset

coefhicient

original Filtered

(no change)

[0,0,0,0,1,0,0,0,0]
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What the **** is Convolution

1.0

coefticient

LA B ®

i)
Pixel offset
[0,0,0,0,0,0,0,1,0]

original
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What the **** is Convolution

1.0

{)
Pixel offset

coefficient

original [0,0,0,0,0,0,0,1,0]

shifted




What the **** is Convolution

RR

coetticient
= =

Pixel offset

original [0,0,0,0.333,0.333,0.333,0,0,0]
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What the **** is Convolution

l’lml OHSu

original Blurred (filter
ol [0,0,0,0.333,0.333,0.333,0,0,0] 3 ‘r, (,(
applied in both

dimensions).
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Gaussian Kernel
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At what scale are our edges defined?
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What kind of invariance does our
algorithm have?

Luminance?

Color?

Translation?
Rotation?

Scale?

Skew? (Perspective?)
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128 element vector * 320 pixels wide * 240 pixels high

= 38 MB per image!
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Rather than describe every pixel of an image,
we need to find the keypoints

Invariance to: luminance, color, rotation,
translation, scale, skew...

Should be fast to detect, and cheap to store!
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Scale Invariant Feature Transform (SIFT)

* Generate a Difference of Gaussian(DoG) or a laplacian pyramid
* Extrema detection from the DoG pyramid which is the local
maxima and minima, the point found is an extrema

 Eliminate low contrast or poorly localized points, what remains
are the keypoints

* Assign an orientation to the points based on the image
properties

* Compute and generate keypoint descriptors
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Popular Feature Detectors:

SIFT: Scale Invariant Feature Transform

SURF: Speeded-Up Robust Features
Harris: Corner detector

FAST: It’s a really fast Corner detector

STAR: Center Surround Extractor (CenSurk)
MSER: Maximally Stable Extremal Regions
GFTT: Good Features To Track

GIST: Global scene feature

HOG: Histogram of Oriented Gradients
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How do we describe features?

How do we match features?
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Now we’ve detected features, but
how do we describe them, and

match similar groups of them?
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Store all keypoints describing our object in a matrix

[
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128 element vector * 500 keypoints

=0.25 MB per image!
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Popular Feature Descriptors:

SIFT: Scale Invariant Feature Transform

SURF: Speeded-Up Robust Features

BRIEF: Binary string descriptor

Geometric Blur: Samples image from small
deviations

Self-Similarity
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How do we match features?
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Nearest neighbors
Hash Table
Approximate Nearest Neighbors

PCA
|ICP
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