Workshops in Creative Computing 2

Computer Vision Module
Lab 1

Parag K Mital
February 20, 2013

Introduction

This

BSD

lab will orient you with using some features of openFrameworks’ ofx-
OpenCv addon, which builds wrappers for OpenCV, and also get you started
with using OpenCV itself using some of its most basic functions. OpenCV is
the industry standard library for OpenCV applications and is developed by In-
tel and supported by WillowGarage. As it is free for use under the open-source
license, you can use it for research and commercial use. The OpenCV
project started in 1999, and is still in active development today, with updates
daily. It is a MASSIVE library, and has tons of libraries dedicated to:

2D and 3D feature toolkits
Egomotion estimation

Facial recognition system

Gesture recognition
Humancomputer interaction (HCI)
Mobile robotics

Motion understanding

Object identification

Segmentation and Recognition
Stereopsis Stereo vision: depth perception from 2 cameras
Structure from motion (SFM)
Motion tracking

Boosting

Decision tree learning

Gradient boosting trees
Expectation-maximization algorithm
k-nearest neighbor algorithm

Naive Bayes classifier

Artificial neural networks



Random forest

Support vector machine (SVM)

GPU enabled functions

GUI Building

Preliminary Android and iPhone support

Integrates with Point Cloud Library (PCL), and the Robotics Operating
System (ROS)

and lots and lots more.
Some links you will very likely need:

e OpenCV 2.1+ Documentation: http://opencv.willowgarage.com/documentation/
cpp/f}

e General OpenCV knowledge can be found here: http://opencv.willowgdrage.
com

e OpenCV Wiki is located here: http://opencv.willowgarage.com/wiki/
FullOpenCVWikil

Part 1 - Luminance and Colorspaces

The first part will get you familiar with some of the ofxOpenCv objects. These
are very nicely written “wrappers” of some commonly used OpenCV functions
(OpenCV is a library included by openFrameworks). As well, they interface with
openkFramework’s ofTexture class, allowing you to draw the OpenCV images
using OpenGL (another library included by openFrameworks). We’ll investigate
some ways of changing the image’s colorspaces using the ofxCv classes and also
use OpenGL blending.

To begin, copy the openFrameworks OpenCV example project’s entire di-
rectory to a new directory at the same hierarchy. The example project’s folder
“opencvExample” is 3 levels above the main openFrameworks directory. Make
sure when you copy the “opencvExample” directory to another location, it is
still 3 levels above the main openFrameworks directory. This ensures all the
project settings still make sense (as they are include files relative to it’s own
current path).

Once you have copied the example directory to a new location, open the
project (either xcode, visual studio, codeblocks, emacs, etc...) and edit testApp.h
to look like:

S UL W N

#pragma once

#include ”ofMain.h”
#include ”ofxCvMain.h”

// this allows us to use the new OpenCV API

LTf you are an advanced user and want to use the newest OpenCV’s API, look here: http:
//opencv.itseez.com/| (Make sure you ignore the Python documentation)


http://opencv.willowgarage.com/documentation/cpp/
http://opencv.willowgarage.com/documentation/cpp/
http://opencv.willowgarage.com
http://opencv.willowgarage.com
http://opencv.willowgarage.com/wiki/FullOpenCVWiki
http://opencv.willowgarage.com/wiki/FullOpenCVWiki
http://opencv.itseez.com/
http://opencv.itseez.com/

10
11

13
14
15
16
17
18

20
21

W N =

© 00~ O Uk

11
12
13
14
15
16
17
18
19
20

21
22
23

// Make sure you add this line if you are going to use the new API
111

using namespace cv;

class testApp : public ofBaseApp{

public:
// redeclaration of functions (declared in base class)
void setup () ;
void update();

void draw () ;

void keyPressed (int key);

I

and testApp.cpp to look like:

#include ”"testApp.h”

// here we ”define” the methods we ”declared” in the "testApp.h”
file

// i get called once
void testApp::setup(){

}

// i get called in a loop that runs until the program ends
void testApp::update(){

}

// i also get called in a loop that runs until the program ends
void testApp::draw(){

}

// i am a callback that gets called whenever the keyboard is
pressed

void testApp:: keyPressed(int key){

}

This is a basic openFrameworks project which includes all of the OpenCV and
ofxOpenCv header files. We will work with this template in the following lab
exercises. It is recommended that you keep this blank template, and copy the
entire project to a new directory (keeping the same directory hierarchy) when
you are working on a new OpenCV-based project.

With a fresh project loaded, load either a Quicktime movie file or live web-
camera and display the output (if you are unsure of how, look at the code from
the examples that come with openFrameworks).

1. In your header file, create both a ofxGrayscalelmage and an ofxCvCol-
orlmage. If you need more, make sure you declare them in your header




file. In your setup() function, make sure you allocate the images you’'ve
declared to be the same size as your movie/camera.

2. Using '=’, you can convert an object of type ofxCvColorImage to an ob-
ject of type ofxCvGrayscalelmage. In your update() function, convert the
incoming image to a grayscale image. In your draw() function, display
both the original color image and next to it the converted grayscale im-
age. (hint: use the classes ofxCvColorImage and ofxCvGrayscalelmage,

and the member functions setFromPixels(...), '=’, and draw(...)); you can
also change the openFrameworks window output size using ofSet Window-
Shape(...)).

3. Create three more ofxCvGrayscale objects. Get the R, G, and B color
channels of the original color image and use these to draw the contents
of the red, green, and blue channels as grayscale images (hint: look for a
function in the ofxCvColorImage header file which converts a color image
into three planar images)

4. Use ofSetColor(...) before drawing each image to display the 3 grayscale
images you’ve just created as red, green, and blue tinted images, respec-
tively.

5. You can blend images with OpenGL using openFrameworks. An example
codefragment for blending images is shown below:

ofEnableAlphaBlending () ;
ofEnableBlendMode (OF BLENDMODE ADD) ;

imagel.draw (0,0) ;
image2.draw (0,0) ;
image3.draw (0,0) ;

0~ Utk WK

ofDisableAlphaBlending () ;

Use blending to blend the three red, green, and blue images.

6. Convert the ofxCvColorlmage from the RGB to Hue-Saturation-Value
(HSV) colorspace (hint: look for a function in the ofxCvColorImage header
file). Display each of the H, S, and V channels as a grayscale image. Then
blend the H, S, and V images together and notice how it differs from
blending R, G, and B images. Why doesn’t it work like RGB?

7. Compare just the 'V’ (Value) image from your HSV conversion to the
grayscale image you created using '=’ (in the beginning of the lab). What
is different about these two images?

Part 2 - Motion Detection

Having some basics of how to start an OpenCV based openFrameworks project
and work with ofxCv* objects, we will now work with storing images and finding



differences between them for a simple measure of motion and foreground/back-
ground. The same algorithm will let us either detect changes between successive
frames, or find the difference between a stored “background” image and the
current image to find “foreground” objects. As we are going to use some more
advanced techniques, we will begin using the OpenCV API directly, and not the
openFrameworks wrapper ofxCv objects. It is very painful at first, and requires
a lot of practice. Take it one step at a time, and breathe.

Start with a new templated project (copying the one you created in the
beginning of Part 1).

1.

U W N =

=]

Begin by getting either a grayscale or “Value” image of an incoming movie
or web-camera, and displaying it (you’ve already done this in Part 1).

Copy this image into another grayscale object and calculate and display
the absolute difference of the previous frame’s image (using absDiff(...)).
This means you’ll need another grayscale image for storing the previous
frame’s grayscale image. Pseudo-code for doing this is below:

// set the color image (opencv container) to the camera
image

// convert to grayscale

// compute the absolute difference with the previous frame’s
grayscale image

// store the current image for the next iteration (which
becomes the previous image)

We are now going to find the average pixel value of the difference image
we just made as a simple measure of the magnitude of “motion”. To help
us, we will use a function to sum every pixel in an image which is part of
OpenCV, but unfortunately not wrapped by ofxCv. In order to use any
of OpenCV functions directly, we need to use obtain the OpenCV image
container: Ipllmage *cvImage, which is part of every ofxCv object. To get
this image pointer, we use the function “getCvImage()”, which returns an
Ipllmage *. e.g.:

Ipllmage smyCvlmage = myOfxCvGrayscalelmage.getCvImage () ;

Now we can use the Ipllmage pointer with any of the functions defined
in OpenCV’s massive library version 2.14-. Since we will use the new
OpenCV functions, included in 2.1+, you will have to use a “Mat” con-
tainer like so: Ipllmage is still supported by the new OpenCV, though
was abandoned for C++ style objects in OpenCV 2.1+. You can convert
a Ipllmage to the new Mat format very simply using:

1| Mat myOpenCvMat (myCvImage) ;




Unfortunately, openFrameworks v0.07 doesn’t wrap any of the new API,
but it does include it’s libraries allowing you to use it. Remember to add
using namespace std; after including ofxCvMain.h, if you are using the
new APIL.

You will want to find a function which takes either the mean or sum, in
order to find the average of all pixels in the grayscale image. The way I
would go about it is to go to the new OpenCV’s API reference page, and
search for “mean”. The following reference comes up: http://opencv.
willowgarage.com/documentation/cpp/core_operations_on_arrays.
html?highlight=mean#mean. Using the new API, the function “mean(...)”
returns a Scalar. You can search for Scalar on the API reference page to
find out how it works, but basically it stores 4-values, where each value is
indexed by the plane it operates on. A 3-channel image has 3 planes, 1
for each channel, e.g. R, G, B. A grayscale image has 1 channel. When
you call:

1’ Scalar myScalar = mean(myOpenCvMat) ;

you can access any of the 4 channels simply by using square brackets:

1’ double motion = myScalar [0];

Thus for our single-channel grayscale image encoding the difference be-
tween two frames, we have found a mean value that we will interpret as
the motion in the frame.

4. Display the motion value as text in the window, or print it to the console.
If you want to have a bit more fun, use this value as a “signal”, and use it
to control something interesting such as the speed of a video, the frequency
of a synthesizer, or the speed of a sound sample. For instance, have a look
at ofVideoPlayer’s or ofSoundPlayer’s setSpeed(...) function.

More advanced models of motion look at the motion at feature points and
can classify activity using trained models of the motion patterns. Dense
optical flow calculates the motion at every pixel of an image. The first op-
tical flow algorithms appeared in 1981, 31 years ago, forming the problem
of detecting motion as an image alignment problem. If you are inter-
ested in playing with motion more, search the OpenCV documentation
for “calcOpticalFlowPyrLK”.

Part 3 - Interactive Colorspaces & Background
Subtraction

(a) Use the motion signal to offset the 3 R,G,B images you displayed in
Part 1. How you do this is up to you. One way would look like a full
color image when there is no motion, and R, G, B planes separated
more relative to higher motion.


http://opencv.willowgarage.com/documentation/cpp/core_operations_on_arrays.html?highlight=mean#mean
http://opencv.willowgarage.com/documentation/cpp/core_operations_on_arrays.html?highlight=mean#mean
http://opencv.willowgarage.com/documentation/cpp/core_operations_on_arrays.html?highlight=mean#mean

(b) Building on Part 2, use the keyboard callback to control when a frame
is stored as a background image instead of storing it every update.
For instance, when a user presses the spacebar, the “previouslmage”
gets updated. Otherwise, it doesn’t update the previousImage. The
ability to select when the image gets stored allows you to interpret
that frame as “background”. The idea is to take a “snapshot” of a
live camera image when no one is in the scene, storing that image
as background. When someone enters, the difference between the
stored image, and the current live image can be used to define blobs
representing the people in the scene.



