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Assignment 1: Still need to solve Computer Vision
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Vision is based on inference
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Popular Uses of Feature Detection:

Structure from Motion
Photo-montage
Panorama/Stitching/Mosaicing
nformation Retrieval

Object Detection

Scene Detection

Action Detection
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Google Image Search,
Google Goggles,
etc...




What makes us perceive objects in images?

Hypothesis: process images bottom-up

— Extract “features”

— Combine features with prior knowledge to
classify objects in the image at a high-level
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Semantic label =
High-level description

Grouping of Features =
Mid-level description

———_ Single feature =

Low-level description

Pixels =
Low-level description
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Generic Object Detection Workflow:

1. How do we detect features?
ow do we describe features?
3. How do we match features?

N
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Hool Eoge
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Edges are where change occurs
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Images can be thought of as functions:
Pixel at location x:

P(x)
Then we can create a function £, which
describes the intensity of pixel x:

f(x)
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Function

Fust Denvalive

Second Denvative
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Derivative
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Gradient
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Images are Discrete Functions
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Sobel: Convolution Operators
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original

Convolution

coeftficient

BRI LFR. 21 B

()
Pixel offset
[0,0,0,0,1,0,0,0,0]
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Convolution

1.0

coefficient

L | V]IV'I

Pixel offset

original Filtered

(no change)
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Convolution

coefficient

IIIIII

i)
Pixel offset

original 0,0,0,00,0,0,1,0]
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original

Convolution

coefficient
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()
Pixel offset
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Convolution

coefticient

ol ?

Pixel offset

original

[0,0,0,0.333,0.333,0.333,0,0,0]
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original

Convolution

coefficient

Pixel offset

[0,0,0,0.333,0.333,0.333,0,0,0]

Blurred (filter
applied in both
dimensions).
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1600 1800 2000
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Sigma = 50

200 400 600 1600

1600

600 800 X 1600

1600

1400

800 1000 1200
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Gaussian Kernel
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At what scale are our edges defined?
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What kind of invariance does our
algorithm have?

Luminance?

Color?

Translation?
Rotation?

Scale?

Skew? (Perspective?)
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Rather than describe every pixel of an image,
we need to find the keypoints

Invariance to: luminance, color, rotation,
translation, scale, skew...

Should be fast to detect, and cheap to store!
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Scale Invariant Feature Transform (SIFT)

* Generate a Difference of Gaussian(DoG) or a laplacian pyramid
* Extrema detection from the DoG pyramid which is the local
maxima and minima, the point found is an extrema

* Eliminate low contrast or poorly localized points, what remains
are the keypoints

* Assign an orientation to the points based on the image
properties

* Compute and generate keypoint descriptors
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Popular Feature Detectors:

SIFT: Scale Invariant Feature Transform
SURF: Speeded-Up Robust Features

Harris: Corner detector

FAST: It’s a really fast Corner detector
STAR: Center Surround Extractor (CenSurk)
MSER: Maximally Stable Extremal Regions
GFTT: Good Features To Track

GIST: Global scene feature

HOG: Histogram of Oriented Gradients
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1. How-do-we-detectfeatures?
ow do we describe features?
3. How do we match features?

N
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Now we’ve detected features, but
how do we describe them, and
match similar groups of them?
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128 element vector * 320 pixels wide * 240 pixels high
= 38 MB per image!
128 element vector * 300 features =

0.15 MB per image
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Store all keypoints describing our object in a matrix

[_
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Popular Feature Descriptors:

SIFT: Scale Invariant Feature Transform

SURF: Speeded-Up Robust Features

BRIEF: Binary string descriptor

Geometric Blur: Samples image from small
deviations

Self-Similarity
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3. How do we match features?
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Nearest neighbors

Hash Table

Approximate Nearest Neighbors
PCA

ICP
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