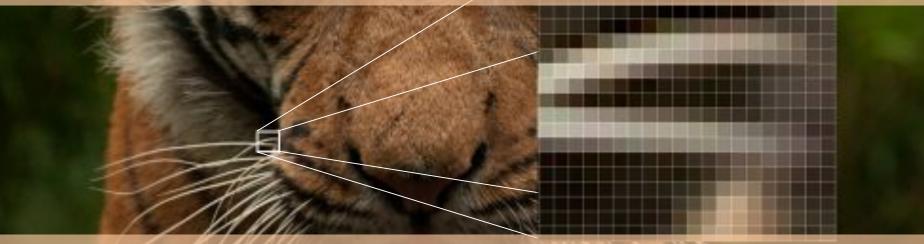
Workshops in Creative Computing: Computer Vision Module



Lecture 2: Image Features

Wednesday, Feb 27, 2013
Parag K Mital

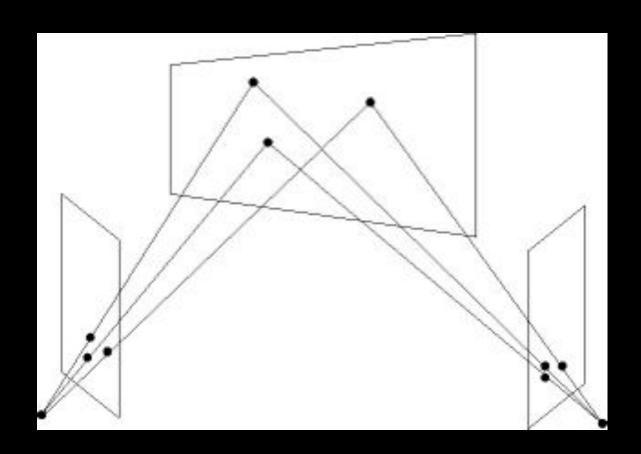
Parag K Mital | Image Features | http://pkmital.com

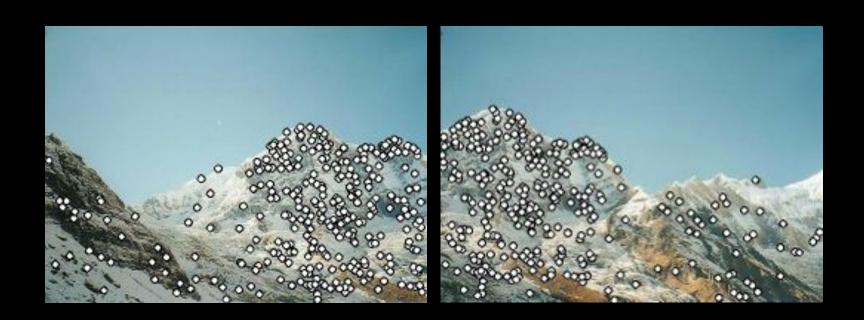
Assignment 1: Still need to solve Computer Vision

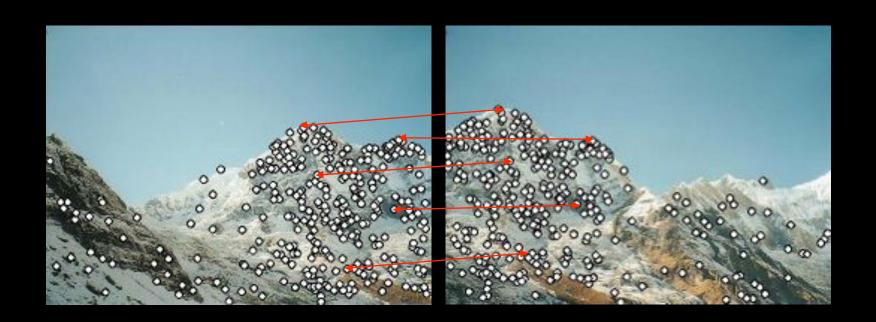
Vision is based on inference

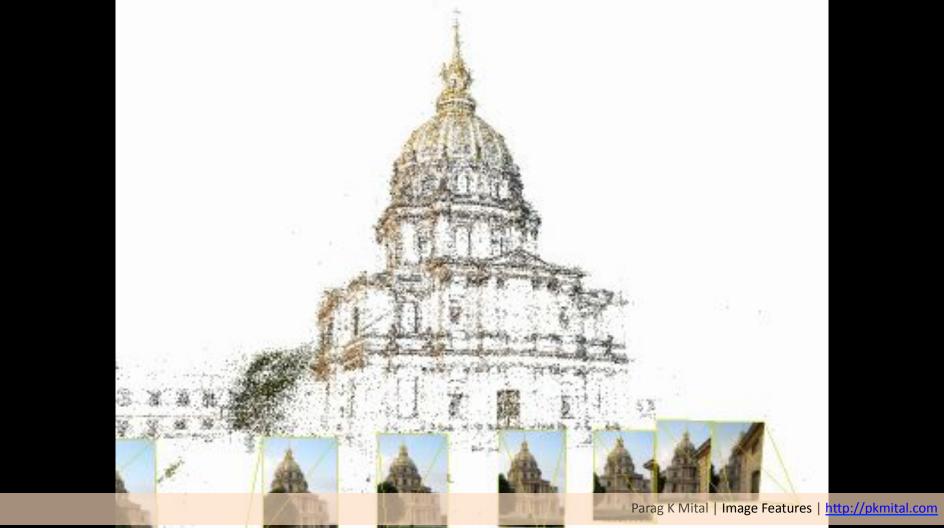
Popular Uses of Feature Detection:

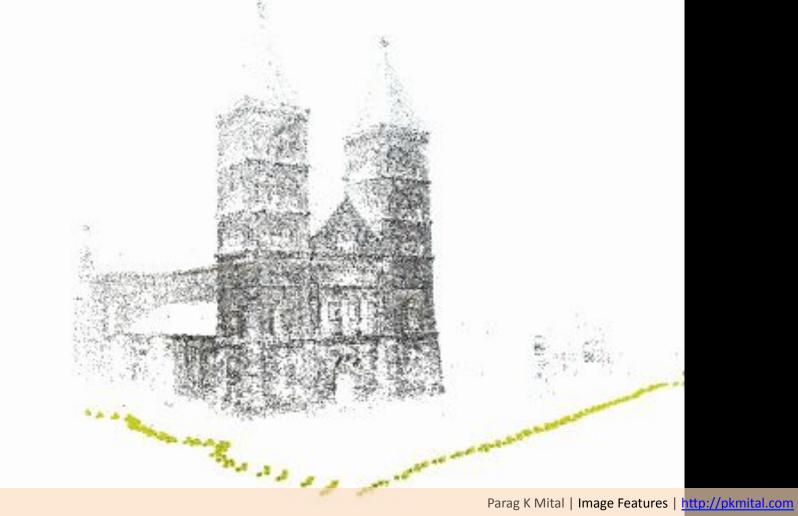
Structure from Motion Photo-montage Panorama/Stitching/Mosaicing Information Retrieval **Object Detection** Scene Detection **Action Detection**









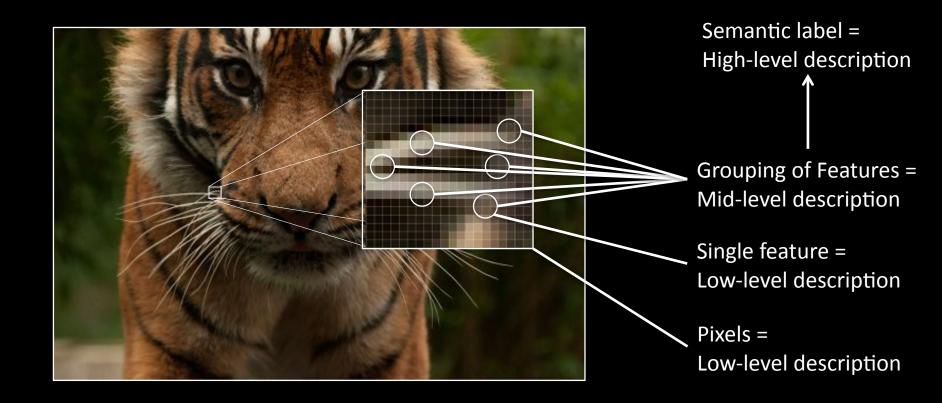


Google Image Search, Google Goggles, etc...

What makes us perceive objects in images?

Hypothesis: process images bottom-up

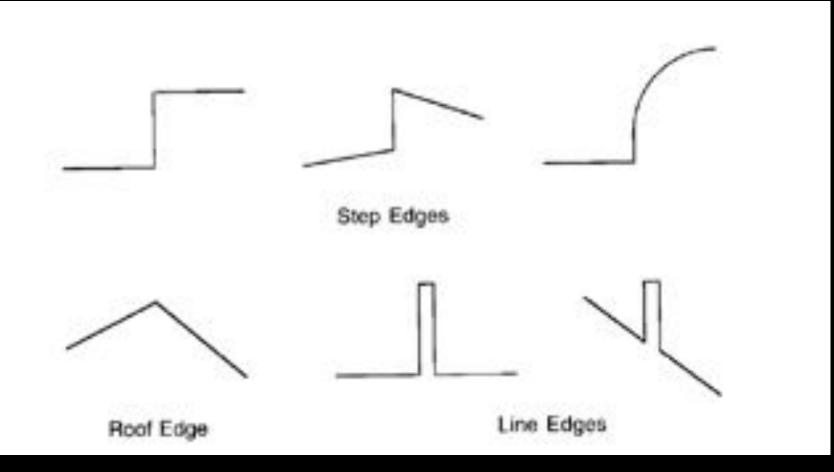
- Extract "features"
- Combine features with prior knowledge to classify objects in the image at a high-level



Generic Object Detection Workflow:

- 1. How do we detect features?
- 2. How do we describe features?
- 3. How do we match features?

Pixels Luminance; Color-spaces; Depth; Heat **Edges/Lists** Sobel; Canny; Hysteresis; Connected Components; Shape Models **Feature Points** SIFT; SURF; Harris Corners; HOG; FAST **Blobs/Regions** Mean-Shift; MSER; Watershed; Graph-Cuts; **Background Subtraction; Appearance Models Geodesics**; Topography; Density Maps



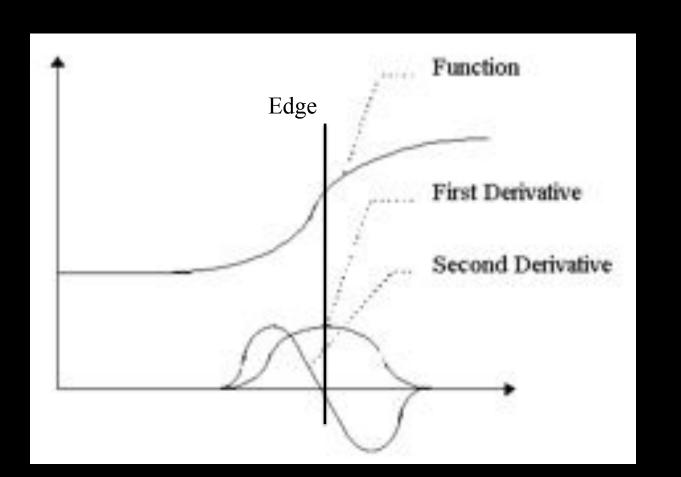
Edges are where change occurs

Images can be thought of as functions: Pixel at location x:

```
P(x)
```

Then we can create a function f, which describes the intensity of pixel x:

```
f(x)
```



Derivative

$$\frac{df}{dx} = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

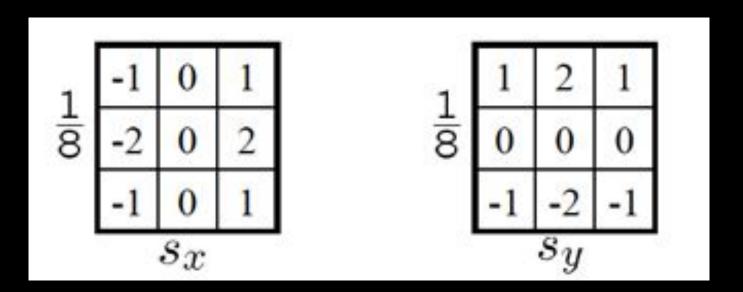
Gradient

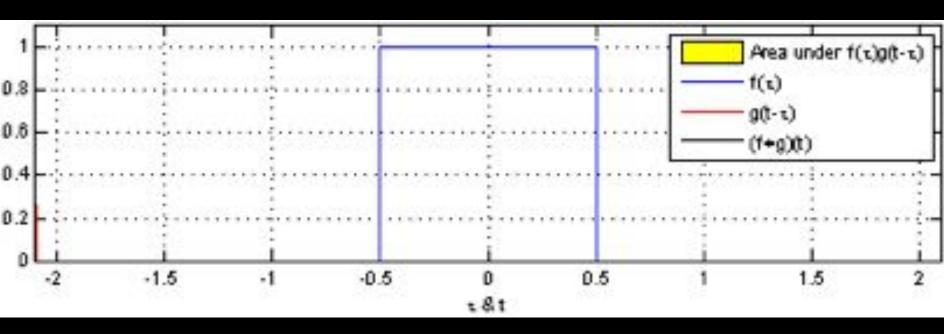
$$\nabla f = \left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y} \right]$$

Images are Discrete Functions

$$\frac{\partial f}{\partial x}[x,y] \approx f[x+1,y] - f[x,y]$$

Sobel: Convolution Operators

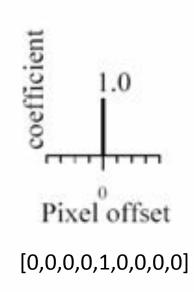




original



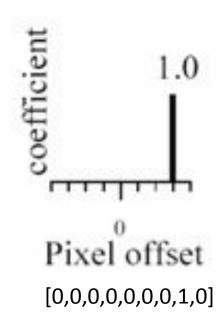
original

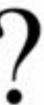


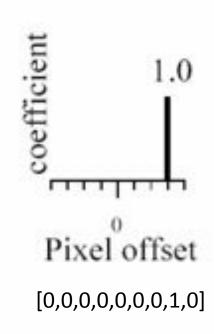
100

Filtered (no change)

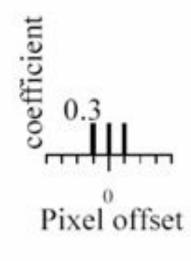
original





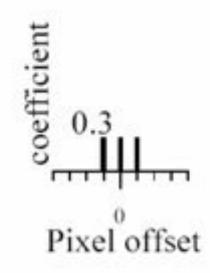


original



[0,0,0,0.333,0.333,0.333,0,0,0]

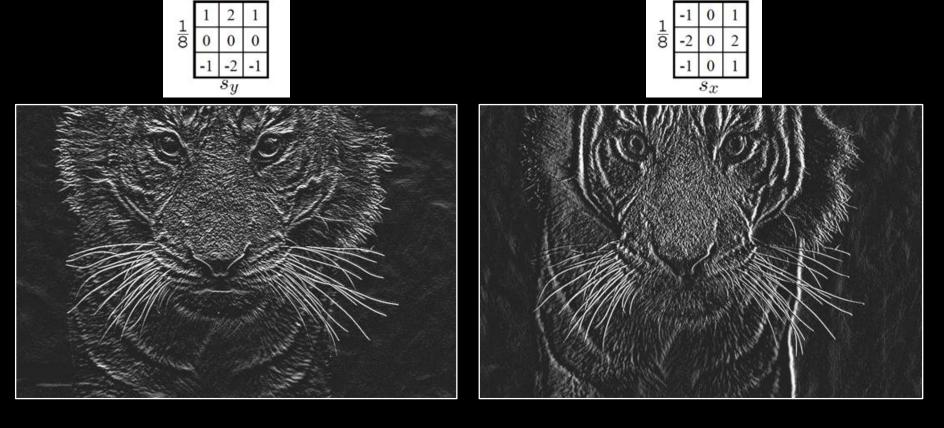
original



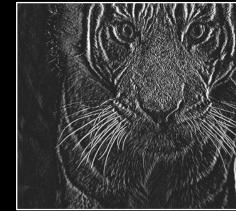
[0,0,0,0.333,0.333,0.333,0,0,0]

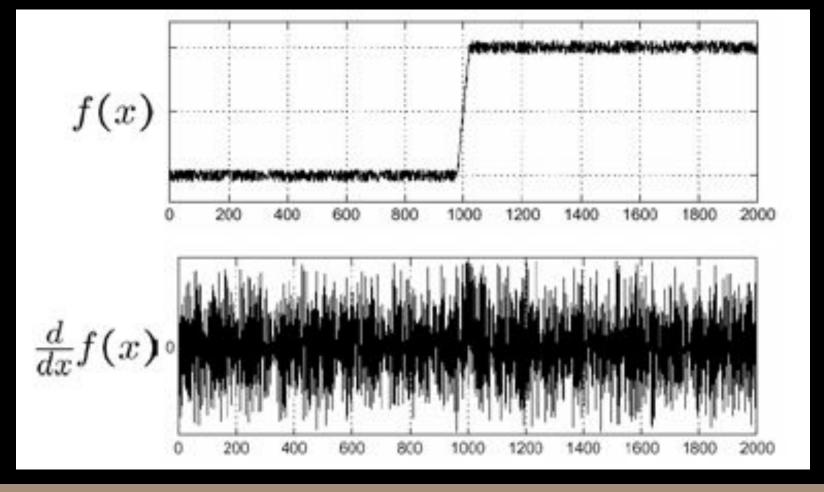
Blurred (filter applied in both dimensions).

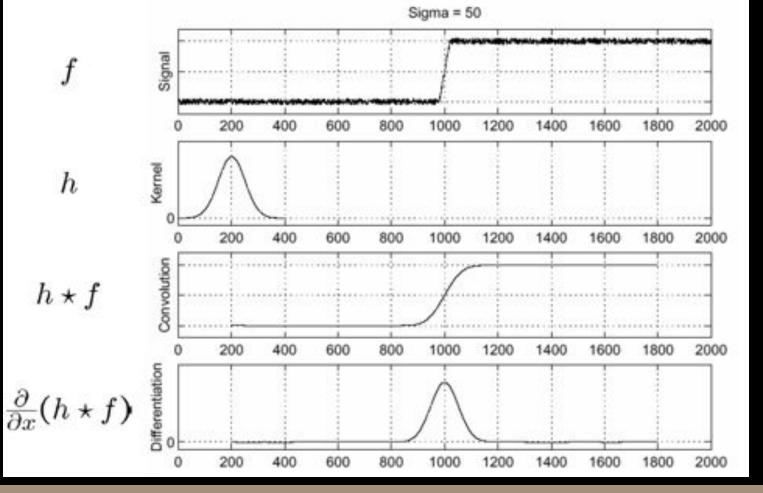
Parag K Mital | Image Features | http://pkmital.com

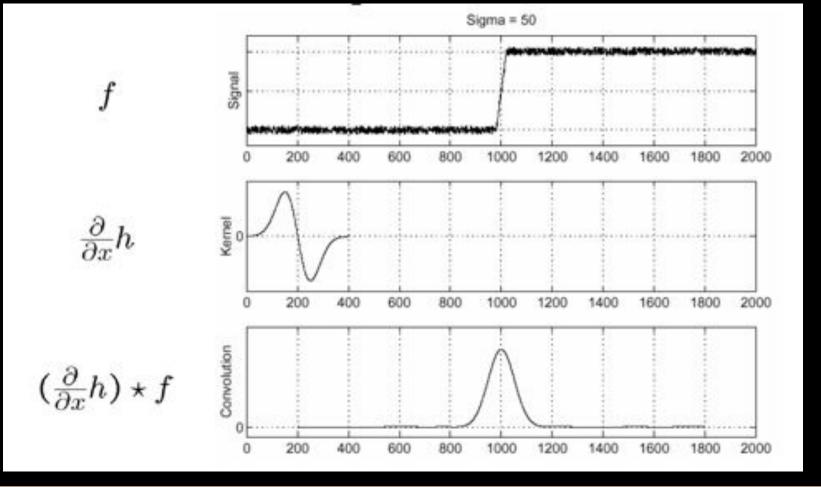




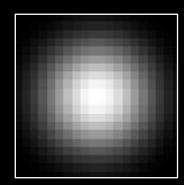




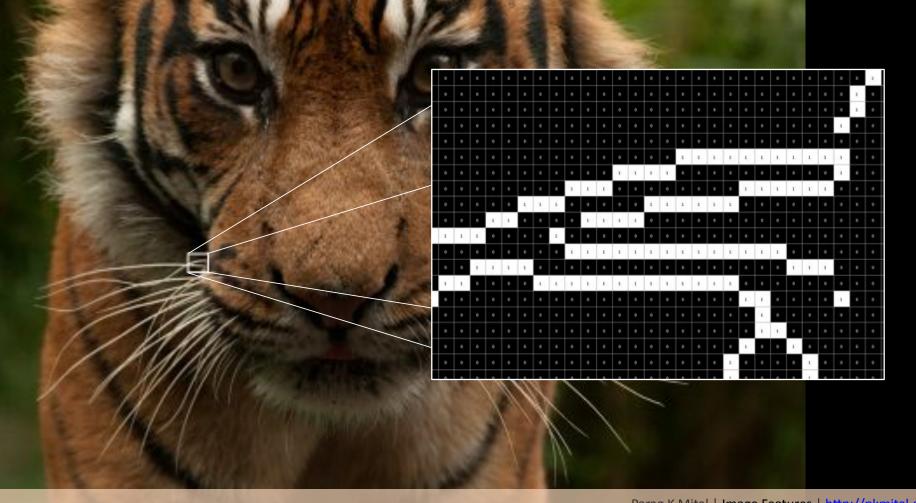




Gaussian Kernel



At what scale are our edges defined?



What kind of invariance does our algorithm have?

Luminance?

Color?

Translation?

Rotation?

Scale?

Skew? (Perspective?)

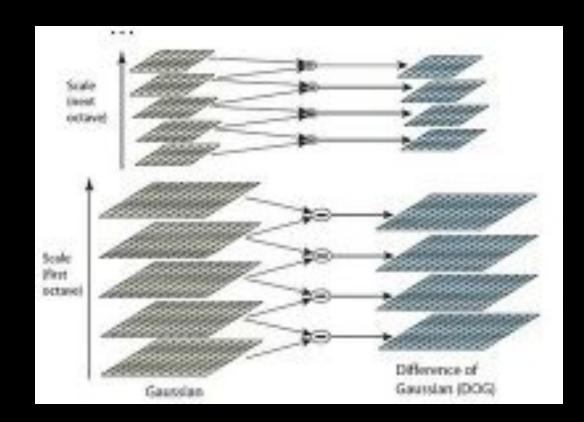
Rather than describe every pixel of an image, we need to find the keypoints

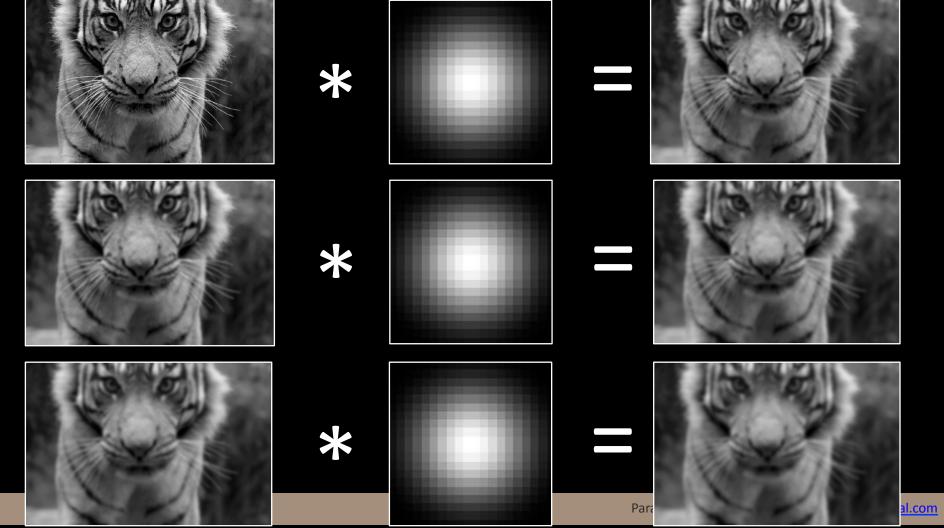
Invariance to: luminance, color, rotation, translation, scale, skew...

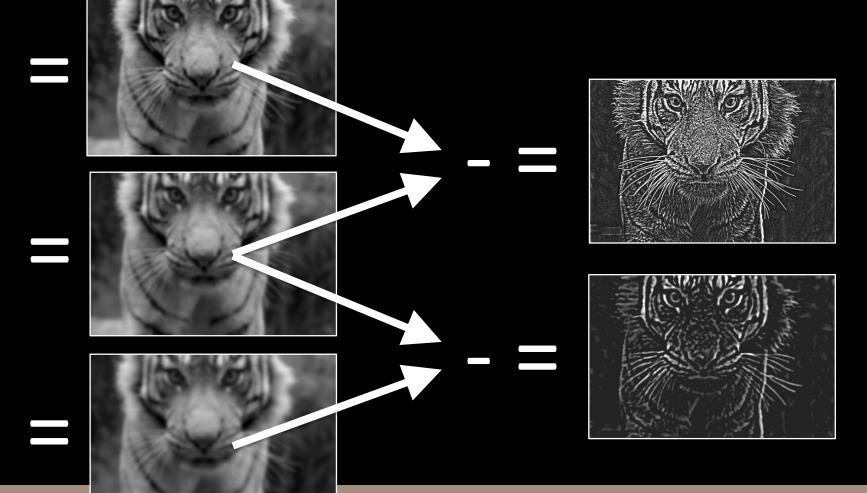
Should be fast to detect, and cheap to store!

Scale Invariant Feature Transform (SIFT)

- Generate a Difference of Gaussian(DoG) or a laplacian pyramid
- Extrema detection from the DoG pyramid which is the local maxima and minima, the point found is an extrema
- Eliminate low contrast or poorly localized points, what remains are the keypoints
- Assign an orientation to the points based on the image properties
- Compute and generate keypoint descriptors







Popular Feature Detectors:

SIFT: Scale Invariant Feature Transform

SURF: Speeded-Up Robust Features

Harris: Corner detector

FAST: It's a really fast Corner detector

STAR: Center Surround Extractor (CenSurE)

MSER: Maximally Stable Extremal Regions

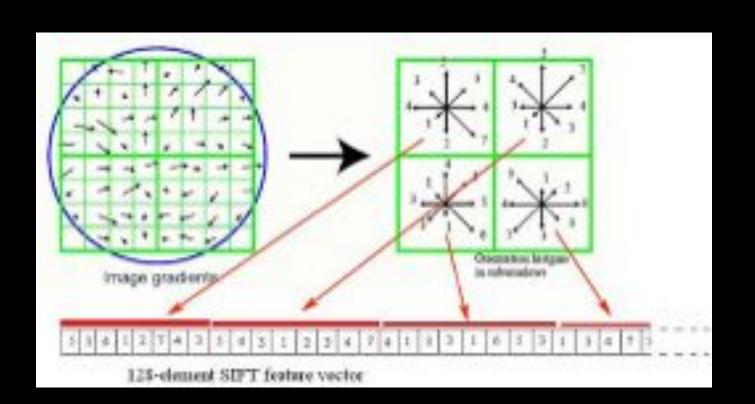
GFTT: Good Features To Track

GIST: Global scene feature

HOG: Histogram of Oriented Gradients

- 1. How do we detect features?
- 2. How do we describe features?
- 3. How do we match features?

Now we've detected features, but how do we describe them, and match similar groups of them?



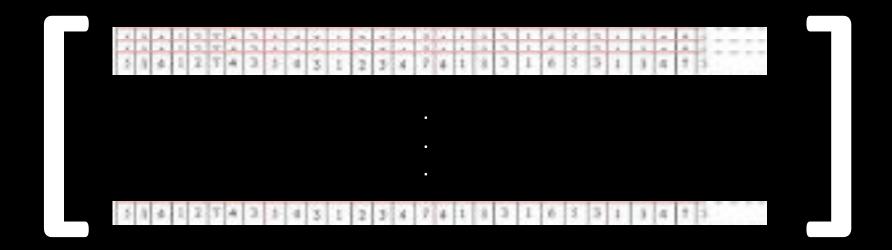
128 element vector * 320 pixels wide * 240 pixels high

= 38 MB per image!

128 element vector * 300 features =

0.15 MB per image

Store all keypoints describing our object in a matrix



Popular Feature Descriptors:

SIFT: Scale Invariant Feature Transform

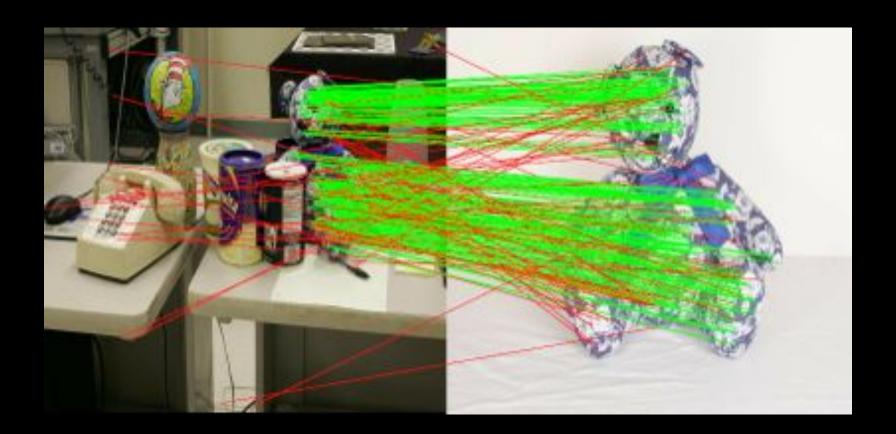
SURF: Speeded-Up Robust Features

BRIEF: Binary string descriptor

Geometric Blur: Samples image from small deviations

Self-Similarity

- 1. How do we detect features?
- 2. How do we describe features?
- 3. How do we match features?



Nearest neighbors
Hash Table
Approximate Nearest Neighbors
PCA
ICP