

UCLA DMA

LOGISTICS

EDI

TA - ????

Technical tools

Learning outcomes

Course structure

Assignments

Course grading

EDI

TA - ????

Technical tools

Learning outcomes

Course structure

Assignments

Course grading

EDI

TA - ????

Technical Tools Learning outcomes Course structure Assignments Course grading

EDI

TA - ????

Technical tools

Learning outcomes

Course structure

Assignments

Course grading

EDI

TA - ????

Technical tools

Learning outcomes

Course structure

Assignments

Course grading

EDI

TA - ????

Technical tools

Learning outcomes

Course structureAssignmentsCourse grading

WHAT IS MACHINE LEARNING?

HOW IS IT INVOLVED IN OUR SOCIETY/DAILY LIVES?

WHAT ARE SOME CONCERNS WITH ITS USE?

CULTURAL APPROPRIATION

What's the connection between Cultural Appropriation and Machine Learning?

- Deep fakes / misrepresentation / slander
- Job automation
- Forgery
- Spam
- Cultural appropriation
- Security / privacy

What is cultural appropriation?

What is cultural appropriation?

guardian 🐡 • Following

•••

guardian What's the difference between cultural appropriation and appreciation?

Cultural appropriation controversies have become a regular feature in our timelines.

Last week, pop singer Adele faced accusations of cultural appropriation after sharing a photo of herself wearing Bantu knots, a traditional African hairstyle, while marking what would have been Notting Hill carnival. But many people defended her, calling it cultural appreciation.

So what's the difference? We spoke to Don't Touch My Hair author

Commodabiri to got a bottor

1,109,971 views

2 DAYS AGO

Add a comment...

Post

What is cultural appropriation?

Madison Hummer, The Appropriation of African Objects in Pablo Picasso's Les Demoiselles d'Avignon. Trinity College, Hartford Connecticut, <u>madison.hummer(a)trincoll.edu</u> https://digitalrepository.trincoll.edu/cgi/viewcontent.cgi?article=1760&context=theses

Michael Ochs Archives/Getty Images

https://www.instagram.com/shudu.gram/

https://www.instagram.com/lilmiquela/

https://www.instagram.com/shudu.gram/

CULTURAL FRAGMENTS

Still-Life with Chair Caning, 1912 by Pablo Picasso

"Exquisite Corpse" - Andre Breton, Jacqueline Lamba and Yves Tanguy

To Make A Dadaist Poem

Take a newspaper.

Take some scissors.

Choose from this paper an article of the length you want to make your poem.

Cut out the article.

Next carefully cut out each of the words that make up this article and

put them all in a bag.

Shake gently.

Next take out each cutting one after the other.

Copy conscientiously in the order in which they left the bag.

The poem will resemble you.

And there you are — an infinitely original author of charming sensibility

even though unappreciated by the vulgar herd.

Daphne Oram Trust / Goldsmiths College, University of London

Pierre Schaeffer - "Musique concrète"

Iannis Xenakis - Granular Synthesis

Where can we see "cultural copies" or "borrowing"?

Where can we see "cultural copies" or "borrowing"?

Collage

Cosmetics

Dummies

Design

Impersonations

Montage

Re-enactments

Simulations

Quotation

Plagiarism

Parody

Fashion

Forgery

Sampling

Pastiche

Remix

Art

Music

Poetry

Books

Scripts

Genes

Memes

Machine Learning...?

MACHINE LEARNING

https://www.theverge.com/2018/10/25/18023266/ai-art-portrait-christies-obvious-sold

https://www.barbican.org.uk/whats-on/2019/event/ai-more-than-human

https://deyoung.famsf.org/martine-syms-threat-model-mythiccbeing
https://deyoung.famsf.org/uncanny-valley-being-human-age-ai

 Big datasets (Everything is digital media these days)

- Big computers (Server farms; GPU computing; TPUs)
- Lots of money and time to compute (Massive industry backing and adoption)

Where does machine learning make decisions today?

- Mortgage risk evaluation
- Insurance risk
- Profiling / policing
- Facial surveillance and recognition
- Recommendation / Personalization
- Driving / navigation
- Factory sorting
- Games / Agents
- Drug discovery / sequencing
- Prostheses

- Indexing / Search
- Optimization / Routing
- Industrial / Military robotics
- Voice assistants
- Advertising / Targeting
- Bots / Spam / Marketing
- Translation
- Art?
- Language / Poetry?
- Sound / Music?

How does Machine Learning make decisions?

- Supervised learning: learn to classify this thing into some box/label
- Unsupervised learning: learn the density of the data, primarily what we will be looking at in this course
- Semi-supervised learning: combination of the two
- Reinforcement learning: agency, robots,
 control, agency / automation in games e.g.
- Other kinds: various optimization methods

ARTIFICIAL INTELLIGENCE

Mobile News Feed

facebook Ad Creative

Desktop Right Column

Your App for Business Business

Use our app and get delicious recipes for Jasper's Market's latest produce. It's fun, easy...

Install Now - 37,235 persons using this

https://arteric.com/our-thoughts/structured-data-voice-driven-search

DEEP LEARNING

Illustration from Frank Rosenblatt, *Principles of Neurodynamics: Perceptrons and the Theory of Brain Mechanisms*, (Cornell Aeronautical Laboratory, Buffalo NY, 1961). Retrieved from https://www.e-flux.com/journal/101/273221/three-thousand-years-of-algorithmic-rituals-the-emergence-of-ai-from-the-computation-of-space/

John von Neumann's cellular automata (wikipedia)

Konrad Zuse -Rechnender Raum painting

https://www.pnas.org/content/116/4/1074

Neural network opened. The colored blocks are building-block functions (i.e. neural network layers), the gray-scale heatmaps are either the input image or intermediate activation vectors after some layers.

https://distill.pub/2020/grand-tour/

https://distill.pub/2017/feature-visualization/

Dataset Examples show us what neurons respond to in practice

Animal faces—or snouts? mixed4a, Unit 240

Clouds—or fluffiness? mixed4a, Unit 453

Buildings—or sky? mixed4a, Unit 492

ROBOTICS

Harold Cohen coloring the forms produced by the AARON drawing "Turtle" at the Computer Museum, Boston, MA, ca. 1982. Collection of the Computer History Museum, 102627459.

The 1979 exhibition, Drawings, at SFMOMA, featured this "turtle" robot creating drawings in the gallery. Collection of the Computer History Museum, 102627449.

Patrick Tresset - "Paul"

Sougwen Chung

Carnegie Mellon University's Robotics Institute - "Frida"

157	153	174	168	150	152	129	151	172	161	155	156	157	153	174	168	150	152	129	151	172	161	155	156
156	182	163	74	75	62	33	17	110	210	180	154	155	182	163	74	75	62	33	17	110	210	180	154
180	180	50	14	34	6	10	33	48	106	159	181	180	180	50	14	34	6	10	33	48	106	159	181
206	109	6	124	131	111	120	204	166	15	56	180	206	109	5	124	131	111	120	204	166	15	56	180
194	68	137	251	237	239	239	228	227	87	71	201	194	68	137	251	237	239	239	228	227	87	71	201
172	105	207	233	233	214	220	239	228	98	74	206	172	106	207	233	233	214	220	239	228	98	74	206
188	88	179	209	185	215	211	158	139	75	20	169	188	88	179	209	185	215	211	158	139	75	20	169
189	97	165	84	10	168	134	11	31	62	22	148	189	97	165	84	10	168	134	11	31	62	22	148
199	168	191	193	158	227	178	143	182	105	36	190	199	168	191	193	158	227	178	143	182	106	36	190
206	174	155	252	236	231	149	178	228	43	95	234	206	174	155	252	236	231	149	178	228	43	96	234
190	216	116	149	236	187	85	150	79	38	218	241	190	216	116	149	236	187	86	150	79	38	218	241
190	224	147	108	227	210	127	102	36	101	255	224	190	224	147	108	227	210	127	102	36	101	255	224
190	214	173	66	103	143	95	50	2	109	249	215	190	214	173	66	103	143	96	50	2	109	249	215
187	196	235	75	1	81	47	0	6	217	255	211	187	196	235	75	1	81	47	0	6	217	255	211
183	202	237	145	0	0	12	108	200	138	243	236	183	202	237	145	0	0	12	108	200	138	243	236
195	206	123	207	177	121	123	200	175	13	96	218	196	206	123	207	177	121	123	200	175	13	96	218

Supervised learning: each training example has a ground truth label. The model learns a decision boundary and replicates the labeling on new data.

https://link.springer.com/article/10.1007/s00117-018-0407-3

Unsupervised learning: training examples do not have ground truth labels. The model identifies structure such as clusters. New data can be assigned to clusters.

https://link.springer.com/article/10.1007/s00117-018-0407-3

SUPERVISED LEARNING

UNSUPERVISED LEARNING

VISION

Semantic label = High-level description

Grouping of Features = Mid-level description

Single feature = Low-level description

Pixels =
Low-level description

Fig. 1 a Original image of frame 1975 of video 24 ('Video Republic' http://www.demos.co.uk/publications/videorepublic); b L* image depicting luminance (Lum); c a* image depicting red/green opponent colors (RG); d b* image depicting blue/yellow opponent colors (BY)

Fig. 3 The process for creating a log-Gabor kernel for 0° (*left* to *right*): a the radial map computed from multiplying a sinusoid with a Gaussian kernel; b the orientation of the kernel set for 0°; c the result of multiplying the radial (a) and orientation (b) maps; d the even

symmetric component of the log-Gabor filter taken from the real part of the inverse fourier transform of the kernel; e the corresponding odd symmetric component taken from the imaginary component of the kernel

Fig. 2 a Edge map using Sobel edge detection; and b Harris comer detection map for the luminance image in Fig. 1b

Fig. 4 Gabor-oriented maps for a 0°, b 45°, c 90°, and d 135° for the luminance image in Fig. 1b

Fig. 5 a High-pass flicker (Flicker); b low-pass flicker (Flicker-N); c horizontal optical flow (U-Flow); d vertical optical flow (V-Flow) for the frame in Fig. 1a

Parag K. Mital, Tim J. Smith, Robin Hill, John M. Henderson. "Clustering of Gaze during Dynamic Scene Viewing is Predicted by Motion" Cognitive Computation, Volume 3, Issue 1, pp 5-24, March 2011.

AUDITION

AUTOMATION

Illustration of "Generative Agents"

https://reverie.herokuapp.com/arXiv Demo/

To Infinity and Beyond: SHOW-1 and Showrunner Agents in Multi-Agent Simulations

Philipp Maas Fable Studio Frank Carey Fable Studio Chris Wheeler Fable Studio

Edward Saatchi Fable Studio Pete Billington Fable Studio Jessica Yaffa Shamash Fable Studio

Abstract

In this work we present our approach to generating high-quality episodic content for IP's (Intellectual Property) using large language models (LLMs), custom state-of-

"The Simulation" - SouthPark - https://twitter.com/fablesimulation/status/
1681352904152850437?lang=en

Communicative Agents for Software Development

Chen Qian Xin Cong Wei Liu Cheng Yang Weize Chen Yusheng Su Yufan Dang Jiahao Li Juyuan Xu Dahai Li Zhiyuan Liu Maosong Sun Tsinghua University Beijing University of Posts and Telecommunications
Dalian University of Technology Brown University Modelbest Inc.
qianc62@gmail.com liuzy@tsinghua.edu.cn sms@tsinghua.edu.cn

https://arxiv.org/pdf/2307.07924v3.pdf

COURSE OUTLINE

Updated course schedule:

https://pkmital.com/home/teaching/ucla-cultural-automation-with-machine-learning/

COURSE GRADING

- 8 assignments, @ 7% each = 56%
- 8 feedback/ lab sessions, @ 3% each = 24%
- 1 final project = 30%

•
$$> 90 = A$$

- 90 80 = B
- 80 70 = C
- 70 60 = D
- < 60 = 2

HOMEWORK

Homework

No homework today, see you Wednesday :)

Upcoming

WENDESDAY

- Lecture: Risks of Machine Learning
- Homework assigned: Research presentations

MONDAY (LAB)

- Student research presentations
- Group review session with student feedback