

CULTURAL AUTOMATION WITH MACHINE LEARNING

Parag K. Mital UCLA DMA

LOGISTICS

Logistics

EDI
TA - ????
Technical tools
Learning outcomes
Course structure
Assignments
Course grading

Logistics

EDI

TA - ????
Technical tools
Learning outcomes
Course structure
Assignments
Course grading

Logistics

EDI
TA - ????
Technical Tools
Learning outcomes
Course structure
Assignments
Course grading

Logistics

EDI
TA - ????
Technical tools
Learning outcomes
Course structure
Assignments
Course grading

Logistics

EDI
TA - ????
Technical tools

Learning outcomes

Course structure
Assignments
Course grading

Logistics

ED
TA - ????
Technical tools
Learning outcomes
Course structure
Assignments
Course grading

WHAT IS MACHINE LEARNING?

HOW IS IT INVOLVED IN OUR SOCIETY/DAILY LIVES?

WHAT ARE SOME CONCERNS WITH ITS USE?

CULTURAL APPROPRIATION

What's the connection between Cultural Appropriation and Machine Learning?

- Deep fakes / misrepresentation / slander
- Job automation
- Forgery
- Spam
- Cultural appropriation
- Security / privacy

What is cultural appropriation?

What is cultural appropriation?

What is cultural appropriation?

Madison Hummer, The Appropriation of African Objects in Pablo Picasso's Les Demoiselles d'Avignon. Trinity College, Hartford Connecticut, madison.hummer@trincoll.edu
htpps: / / digitalrepository.trincoll. edu/ / gi/ vierecontent.cgi.article $=17608$ context $=$ theses

https:/ / werero.instagram.com/shudu.gram/

CULTURAL FRAGMENTS

Still-Life with Chair Caning, 1912 by Pablo Picasso

"Exquisite Corpse" - Andre Breton, Facqueline Lamba and 1ves Tanguy

To Make A Dadaist Poem

Take a newspaper.
Take some scissors.
Choose from this paper an article of the length you want to make your poem.
Cut out the article.
Next carefully cut out each of the words that make up this article and
put them all in a bag.
Shake gently.
Next take out each cutting one after the other.
Copy conscientiously in the order in which they left the bag.
The poem will resemble you.
And there you are - an infinitely original author of charming sensibility
even though unappreciated by the vulgar herd.

Daphne Oram Trust / Goldsmiths College, University of London

Pierre Schaeffer - "Musique concrète"

Iannis Xenakis - Granular Synthesis

Where can we see "cultural copies" or "borrowing"?

Where can we see "cultural copies" or "borrowing"?

- Collage
- Cosmetics
- Dummies
- Design
- Impersonations
- Montage
- Re-enactments
- Simulations
- Quotation
- Plagiarism
- Parody
- Fashion
- Forgery
- Sampling
- Pastiche
- Remix
- Art
- Music
- Poetry
- Books
- Scripts
- Genes
- Memes
- Machine Learning...?

MACHINE LEARNING

https:/ / wrere:.theverge.com/2018/10/25/18023266/ai-ant-portrait-christies-obvious-sold

https:/ /werere.barbican.org.uk/whats-on/2019/event/ai-more-than-human

https: / / deyoung famsf.org/martine-syms-threat-model-my thiccbeing
https:/ / deyoung.famsf.org/uncanny-valley-being-human-age-ai

- Big datasets (Everything is digital media these days)
- Big computers (Server farms; GPU computing; TPUs)
- Lots of money and time to compute (Massive industry backing and adoption)

Where does machine learning make decisions today?

- Mortgage risk evaluation
- Insurance risk
- Profiling / policing
- Facial surveillance and recognition
- Recommendation / Personalization
- Driving / navigation
- Factory sorting
- Games / Agents
- Drug discovery / sequencing
- Prostheses
- Indexing / Search
- Optimization / Routing
- Industrial / Military robotics
- Voice assistants
- Advertising / Targeting
- Bots / Spam / Marketing
- Translation
- Art?
- Language / Poetry?
- Sound / Music?

How does Machine Learning make decisions?

- Supervised learning: learn to classify this thing into some box/label
- Unsupervised learning: learn the density of the data, primarily what we will be looking at in this course
- Semi-supervised learning: combination of the two
- Reinforcement learning: agency, robots, control, agency / automation in games e.g.
- Other kinds: various optimization methods

ARTIFICIAL INTELLIGENCE

$\int 1$
 חaturalmatian

Mobile News Feed

facebook

Ad Creative

Desktop Right Column

Your App for Business
Business
Use our app and get delicious recipes for
Jasper's Market's latest produce. It's fun,
easy...
Install Now - 37,235 persons using this

https:// arteric.com/our-thoughts/structured-data-voice-driven-search

DEEP LEARNING

Figure 1 ORGANIZATION OF THE MARK I PERCEPTRON

Fohn von Neumann's cellular automata
(wikipedia)

Konrad Zuse -
Rechnender Raum painting

1980S-ERA NEURAL NETWORK

DEEP LEARNING NEURAL NETWORK

https: / /werere.pnas.org/content/116/4/1074

Neural network opened. The colored blocks are building-block functions (i.e. neural network layers), the gray-scale
heatmaps are either the input image or intermediate activation vectors after some layers.

Textures (layer mixed3a)

Patterns (layer mixed4a)

Parts (layers mixed4b \& mixed4c)

Objects (layers mixed4d \& mixed4e)

Dataset Examples show
us what neurons
respond to in practice

Optimization isolates the causes of behavior from mere correlations A neuron may not be detecting what you initially thought.

ROBOTICS

Harold Cohen coloring the forms produced by the AARON drawing "Turtle" at the Computer Museum, Boston, MA, ca. 1982. Collection of the Computer History Museum, 102627459.

The 1979 exhibition, Drawings, at SFMOMA, featured this "turtle" robot creating drawings in the gallery. Collection of the Computer History Museum, 102627449.

Patrick Tresset - "Paul"

Sougwen Chung

Carnegie Mellon University's Robotics Institute - "Frida"

DATA

Supervised learning: each training example has a ground truth label. The model learns a decision boundary and replicates the labeling on new data.

Unsupervised learning: training examples do not have ground truth labels. The model identifies structure such as clusters. New data can be assigned to clusters.

Applied to new input
https:/ /link.springer:com/article/10.1007/s00117-018-0407-3

SUPERVISED LEARNING

UNSUPERVISED LEARNING

VISION

Semantic label = High-level description

Grouping of Features = Mid-level description

Single feature = Low-level description

Pixels =
Low-level description

Fig. 1 a Original image of frame 1975 of video 24 ('Video Republic' http://www.demos.co.uk/publications/videorepublic); b L^{*} image depicting luminance (Lum); c a^{*} image depicting red/green opponent colors (RG); d b^{*} image depicting blue/yellow opponent colors (BY)

> Parag K. Mital, Tim 7. Smith, Robin Hill, John M. Henderson. "Clustering of Gaze during Dynamic Scene Viereing is Predicted by Motion"
> Cognitive Computation, Volume 3, Issue 1, pp 5-24, March 2011.

Fig. 3 The process for creating a \log-Gabor kernel for 0° (left to right): a the radial map computed from multiplying a sinusoid with a Gaussian kemel; b the orientation of the kemel set for 0°; \mathbf{c} the result of multiplying the radial (a) and orientation (b) maps; \mathbf{d} the even
symmetric component of the log-Gabor filter taken from the real part of the inverse fourier transform of the kernel; \mathbf{e} the corresponding odd symmetric component taken from the imaginary component of the kernel

```
    Parag K. Mital, Tim 7. Smith, Robin Hill, Fohn M. Henderson.
"Clustering of Gaze during Dynamic Scene Viewing is Predicted by Motion"
    Cognitive Computation, Volume 3, Issue 1, pp 5-24, March }2011
```

(a)

(b)

[^0]

Fig. 4 Gabor-oriented maps for a 0°, b 45°, c 90°, and $\mathbf{d} 135^{\circ}$ for the luminance image in Fig. 1 b

> Parag K. Mital, Tim F. Smith, Robin Hill, Fohn M. Henderson.
> "Clustering of Gaze during Dynamic Scene Viewing is Predicted by Motion"
> Cognitive Computation, Volume 3, Issue 1, pp 5-24, March 2011.

Fig. 5 a High-pass flicker (Flicker); blow-pass flicker (Flicker-N); chorizontal optical flow (U-Flow); d vertical optical flow (V-Flow) for the frame in Fig. 1a

Parag K. Mital, Tim 7. Smith, Robin Hill, Fohn M. Henderson.
"Clustering of Gaze during Dynamic Scene Vieceing is Predicted by Motion"
Cognitive Computation, Volume 3, Issue 1, pp 5-24, March 2011.

AUDITION

Parag K. Mital + Refik Anadol Studio

AUTOMATION

> Illustration of "Generative Agents"
> https://reverie.herokuapp.com/arXiv Demo/

To Infinity and Beyond: SHOW-1 and Showrunner

Abstract

In this work we present our approach to generating high-quality episodic content for
P's (Intellectual Prent our approach to generaing indels (LIMs) custom st for

"The Simulation" - SouthPark - https:/ / twitter:com/fablesimulation/status/ 1681352904152850437 Plang=en

Communicative Agents for Software Development

 Yufan Dang ${ }^{\star} \quad$ Jiahao $\mathrm{Li}^{\star}{ }^{\star}$ Juyuan $\mathrm{Xu}^{\star} \quad$ Dahai Li ${ }^{\star} \quad$ Zhiyuan Liu ${ }^{\star} \boxtimes$ Maosong Sun ${ }^{\star} \bowtie$ ${ }^{\star}$ Tsinghua University ${ }^{*}$ Beijing University of Posts and Telecommunications Tsinghua University ${ }^{*}$ Beijing University of Posts and Telecommunications
\star Dalian University of Technology ${ }^{\star}$ Brown University ${ }^{\star}$ Modelbest Inc. qianc62@gmail.com liuzy@tsinghua.edu.cn sms@tsinghua.edu.cn

(a) Naive Instruction in Coding

(c) Naive Instruction in Testing

(b) Thought Instruction in Coding

(d) Thought Instruction in Testing

COURSE OUTLINE

Updated course schedule:

https://pkmital.com/home/teaching/ucla-cultural-automation-with-machine-learning/

COURSE GRADING

- 8 assignments, @ 7\% each = 56\%
- 8 feedback/ lab sessions, @ 3\% each = 24\%
- 1 final project = 30\%

Total = 110\%

- > $90=\mathrm{A}$
- $90-80=\mathrm{B}$
- $80-70=C$
- $70-60=\mathrm{D}$
- $<60=$?

HOMEWORK

Homework

No homework today, see you Wednesday :)

Upcoming

WENDESDAY

- Lecture: Risks of Machine Learning
- Homework assigned: Research presentations

MONDAY (LAB)

- Student research presentations
- Group review session with student feedback

[^0]: Parag K. Mital, Tim F. Smith, Robin Hill, Fohn M. Henderson.
 "Clustering of Gaze during Dynamic Scene Viereing is Predicted by Motion"
 Cognitive Computation, Volume 3, Issue 1, pp 5-24, March 2011.

